Decreased glutamate receptor 2 expression and enhanced epileptogenesis in immature rat hippocampus after perinatal hypoxia-induced seizures.
نویسندگان
چکیده
Hypoxic encephalopathy is the most common cause of neonatal seizures and can lead to chronic epilepsy. In rats at postnatal days 10-12 (P10-12), global hypoxia induces spontaneous seizures and chronically decreases seizure threshold, thus mimicking clinical aspects of neonatal hypoxia. We have shown previously that the acute and chronic epileptogenic effects of hypoxia are age-dependent and require AMPA receptor activation. In this study, we aimed to determine whether hypoxia-induced seizures and epileptogenesis are associated with maturational and seizure-induced changes in AMPA receptor composition and function. Northern and Western blots indicated that glutamate receptor 2 (GluR2) mRNA and protein expression were significantly lower in neocortex and hippocampus at P10-12 compared with adult. After hypoxia-induced seizures at P10, GluR2 mRNA was significantly decreased within 48 hr, and GluR2 protein was significantly decreased within 96 hr. AMPA-induced Co(2+) uptake by neurons in hippocampal slices indicated higher expression of Ca(2+)-permeable AMPA receptors in immature pyramidal neurons compared with adult. In slices obtained 96 hr after hypoxia-induced seizures, AMPA-induced Co(2+) uptake was significantly increased compared with age-matched controls, and field recordings revealed increased tetanus-induced afterdischarges that could be kindled in the absence of NMDA receptor activation. In situ end labeling showed no acute or delayed cell death after hypoxia-induced seizures. Our results indicate that susceptibility to hypoxia-induced seizures occurs during a developmental stage in which the expression of Ca(2+)-permeable AMPA receptors is relatively high. Furthermore, perinatal hypoxia-induced seizures induce increased expression of Ca(2+)-permeable AMPA receptors and an increased capacity for AMPA receptor-mediated epileptogenesis without inducing cell death.
منابع مشابه
AMPA/kainate receptor-mediated downregulation of GABAergic synaptic transmission by calcineurin after seizures in the developing rat brain.
Hypoxia is the most common cause of perinatal seizures and can be refractory to conventional anticonvulsant drugs, suggesting an age-specific form of epileptogenesis. A model of hypoxia-induced seizures in immature rats reveals that seizures result in immediate activation of the phosphatase calcineurin (CaN) in area CA1 of hippocampus. After seizures, CA1 pyramidal neurons exhibit a downregulat...
متن کاملNeonatal seizures alter NMDA glutamate receptor GluN2A and 3A subunit expression and function in hippocampal CA1 neurons
Neonatal seizures are commonly caused by hypoxic and/or ischemic injury during birth and can lead to long-term epilepsy and cognitive deficits. In a rodent hypoxic seizure (HS) model, we have previously demonstrated a critical role for seizure-induced enhancement of the AMPA subtype of glutamate receptor (GluA) in epileptogenesis and cognitive consequences, in part due to GluA maturational upre...
متن کاملPrenatal stress increased γ2 GABAA receptor subunit gene expression in hippocampus and potentiated pentylenetetrazol-induced seizure in rats
Objective(s): Stress during pregnancy is able to bring extensive effects on neurobehavioral development in offspring. The GABAergic system plays a pivotal role in neuronal excitability, which can be affected by prenatal stress (PS). This study aimed to evaluate impact of the PS on γ2 subunit of gamma-aminobutyric acid A (GABAA) receptor gene expression in the hippocamp...
متن کاملEpigenetic control of epilepsy target genes contributes to a cellular memory of epileptogenesis in cultured rat hippocampal neurons
Hypersynchronous neuronal excitation manifests clinically as seizure (ictogenesis), and may recur spontaneously and repetitively after a variable latency period (epileptogenesis). Despite tremendous research efforts to describe molecular pathways and signatures of epileptogenesis, molecular pathomechanisms leading to chronic epilepsy remain to be clarified. We hypothesized that epigenetic modif...
متن کاملHippocampal Expression of Connexin36 and Connexin43 during Epileptogenesis in Pilocarpine Model of Epilepsy
Background: Gap junctions (GJs) provide direct intercellular communications that are formed by hexameric protein subunits, called connexin (Cx). The role of Cxs in epileptogenesis has not received sufficient attention. Hippocampus with critical function in epileptogenesis has a wide network of GJs. We examined the protein expression levels of hippocampal Cx36 (the prominent Cx present between G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 21 20 شماره
صفحات -
تاریخ انتشار 2001